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The three-dimensional laminar boundary layer 
on a flat plate 

By L. SOWERBY 
Department of Theoretical Mechanics, University of Bristol. 

(Received 13 November 1964) 

A series expansion is derived for the three-dimensional boundary-layer flow 
over a flat plate, arising from a general main-stream flow over the plate. The 
series involved are calculated as far as terms of order t2, where 5 is a non-dimen- 
sional parameter defining distance measured from the leading edge of the plate. 
The results are applied to an example in which the main stream arises from the 
disturbance of a uniform stream by a circular cylinder mounted downstream 
from the leading edge of the plate, the axis of the cylinder being normal to the 
plate. Calculations are made for shear stress components on the plate, and for 
the deviation of direction of the limiting streamlines from those in the main 
stream. 

1. Introduction 
The object of this investigation is the determination of the leading terms 

in an expansion in series for the laminar boundary layer near the leading edge 
of a flat plate, and such that the expansion is sufficiently general to correspond 
to a wide class of possible flows in the main stream over the plate. 

The study of three-dimensional boundary layers on flat plates is greatly simpli- 
fied by the absence of geometrical complications, and Blasius-type solutions of 
the equations have been derived by Hansen & Herzig (1956). Previously, both 
Loos (1955) and Sowerby (1954) had discussed a special case of such solutions. 
These solutions relate to boundary layers associated with a special class of main- 
stream flows-namely, the class in which the streamlines form a system of trans- 
lates. Nevertheless, they exhibit genuine three-dimensional effects, such as the 
divergence of the direction of limiting streamlines from the direction of the exter- 
nal streamlines, and the work of Hansen & Herzig has been used by Cooke 
(1959) as a test for the accuracy of his approximate solutions. They are also exact 
solutions of boundary-layer equations, in the sense that the Blasius function is 
an exact solution of the two-dimensional boundary-layer equations. The solution 
given in this paper is more restricted in that it is an expansion in series, of which 
only the first few terms are derived. It corresponds, however, to realistic main- 
stream distributions, and serves to provide detailed information in the early 
stages of development of the boundary layer on a flat plate. 
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2. Boundary-layer equations, and transformation of co-ordina tes 
Let O(x,  y, z)  be a system of rectangular Cartesian co-ordinates, with the plate 

situated in the half-plane z = 0, x 2 0. Then, if u, v, w are appropriate components 
of the velocity v of the fluid, for steady flow the boundary-layer equations in a 
usual notation are 

(2.1) u-+v-++- = ---+v- au au au 1 ap a2u 
ax ay a2 pax a~ 

and the equation of continuity is 
au av aw 
ax ay a2 
- -+-+--0 .  (2.3) 

Since ap/az = 0, the pressure p is determined by the inviscid flow in the main 
stream; thus, if U ,  V ,  W are velocity components for this flow, 

lap au au _ _ _  - - u-+V- ,  
pax  ax ay 

l ap  av av 
- u-+ v-, 

P a Y  ax a Y  

where now in these last relations the terms on the right are evaluated setting 
z = 0, so that U, V are treated as functions of x, y only. 

The curved main-stream flow over the plate may be considered as established 
by some disturbing body in a uniform main stream, such as a cylinder set with 
its axis normal to the plate; this is the example which has been chosen to illu- 
strate an application of the general results. Complications due to the boundary- 
layer and wake effects associated with the cylinder may be avoided by placing 
the cylinder downstream from the leading edge of the plate, so that there exists 
a region of inviscid main-stream flow near the leading edge of the plate. Thus a 
representative length ‘a’ may be selected (in this instance the radius of the 
cylinder), and the following non-dimensional variables may be formed: 

g-.= x/a, s = y/a, 7 = (U/2vaiJ) z. (2.6) 

The velocity components U and V are functions of C, s only, and the velocity 
components in the boundary layer are expressed as 

u = u af(E,r, s ) / a ~ ,  v = V a d E , ~ ,  $)lay and w = ( U+a5)*h(f, 7,s)- (2.7) 

An alternative but more complicated approach here might be the use of an 
extension of Gortler’s transformation for the two-dimensional case, with the 
possibility then of including other three-dimensional boundary-layer flows 
in addition to the flow over a flat plate. The above transformation is simply the 
three-dimensional equivalent of Falkner’s transformation; for both transforma- 
tions see, for example, Rosenhead (1963, Ch. VI). 
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Substitution in the equation of continuity (2.3), and one integration with 
respect to leads to the result (apart from an arbitrary function of 6 and s) 

in which a literal suffix denotes, as usual, differentiation with respect to the ap- 
propriate variable. 

The boundary conditions on the functions f, g, h are clearly 

f = g  = h =  0, when 7 = 0 ,  
r ) r )  

f,,g, --f 1, as 7 -+ a. 

The boundary condition on h is evidently satisfied provided f and g satisfy also 
the conditions 

f = g = ft = gs = 0, 

Thus a complete set of boundary conditions for f and g is 

when 7 = 0. 

(2.9) 1 f = f  = f  - - g = g ,  = gs = 0, when 7 = 0, 0 

f,,g,+ 1, as q+ a. 

The coefficients arising from combinations of U, V and their derivatives, which 
occur in result (2.8), also arise in the transformed equations of motion, and it is 
convenient here to  define these combinations as new functions of 6 and s. 

A = V / U ,  B = UElU, C = KJU, D = VU,/U2, E = V,/V. (2.10) 

Certain combinations of these functions occur later, and may be stated here. 

(2.11) 

These are 

Put 

i 
F = B+2C-D, 
G = 2(B + D),  
K = 2(C+E-B-D). 

It is assumed that U and V are non-zero, at least in some region extending 
downstream from the edge of the plate. The condition that U should be non- 
zero (and also positive, incidentally) is the same as in the case of the two-dimen- 
sional Blasius boundary layer, but there is no physical reason why V should not 
assume zero values along some curve or straight line. It is assumed in the analysis 
to follow that V is non-zero at the edge of the plate; the alternative, namely 
V(0 ,  s) = 0, will be discussed later, where it will be shown that this apparently 
exceptional case is indeed covered by the general results. 

With regard to  relations (2.10) it  is evident that for a two-dimensional main 
stream in planes parallel to the plate the functions A ,  . .., E reduce to four in 
number, since the equation of continuity is 

aujax + avlay  = 0, 

and hence B = -C. (2.12) 

I n  general, however, this relation is not valid. For a three-dimensional main 
stream (such as, for example, a uniform stream disturbed by a hemisphere 
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placed with its base on the plate) the equation of continuity is 

a q a x  + a via9 + a wlaz = 0, 

in which the term a W/az is not zero in general. 
The analysis in the next section is based on the general case, but it will be seen 

that, in the circumstances in which relation (2.12) is valid, some reduction would 
be possible in the number of functionsfsj, g%j which are required to determine the 
velocity distribution in the boundary layer. 

It remains now to state the transformed form of equations (2.1) and (2.2). 
With use of result (2.8), and the expressions for the pressure gradients, these 
equations are, respectively, 

f,,, +ff,, + ERf&, - 2f,f& + *(ff,, - 2.f;+ 2) + 2 w , ,  - &$, + 2f,g, - 2 )  
+ 2A (98f,, - g,f,s)) = 0, (2.13) 

9,q, +fS,,+ fP.fES,, - 2f&, +Bfs,, + 2C(gs,, + 1 - 9,”) - DW,, + 2-w -f,g,) 
+2A(g,g,,-g,g,s)) = 0- (2 -14 

3. Expansions in series 
Equations (2.13) and (2.14), subject to the boundary conditions (2.9) may 

be solved by expansions in series of powers of 6. It is assumed that the coeffi- 
cients A etc. are analytic functions of 5, so that 

where the Ant are functions of s alone. Similar expansions hold for the remaining 
coefficients, and the expansions for the velocity functions are 

m m 

(3.2) 

wheref,, gn are functions of both q and s. These functions, in fact, must later be 
decomposed further into a sum of functions of q alone, with coefficients in func- 
tions of s. 

The boundary conditions on f,, gn are, from (2.9), 

(3.3) I fn  = afn/aq = gn = agn/aq = agn/8s = 0, when T,I = 0, 

a!,/% ago/ar -+ 1, as r 3 a, 
afn/aq, agn/aq -+ 0, as q + CO, for n >, 1. 

The expansions above are substituted in equations (2.13) and (2.14) and 
coefficients of the various powers of C; are equated to zero. The terms independent 
off yield at once 

W01ar3 +fo~zfolar2 = 0, (3-4) 

a3gO/ar3 +foa2go/aq2 = 0, (3.5) 

and in view of the boundary conditions on$, and go these functions are clearly 
independent of s and are equal, each being identical with the Blasius function for 

t In  this section, literal suffixes do not refer to partial differentiation. 
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two-dimensional flow. This is to be expected, since these results assert that close 
to the edge of the plate the boundary-layer flow is the Blasius flow as determined 
by local main-stream conditions. 

For the powers of 6 up to E2, and with use of the equality offo and go, the follow- 
ing equations are obtained: 

From the form of equations (3.6)-(3.9), and the fact that fo is a function of 
q alone, it is evident that f, etc. can be expressed as linear combinations of 
functions of 7 alone, with coefficients in functions of s. Fortunately, the similarity 
between the equations for fn  and gn leads to some simplification in the expressions 
which are required for gn once the expressions for f n  have been decided. 

A prime is now used to denote differentiation of a function of one variable with 
respect to  that variable, and the expressions forf,, g1 are 

I fl = 4flM + GOflZ(7h 

gl = fl + KO!?ll(7) 7 

where fil, f12, gll satisfy respectively the ordinary differential equations 

and 

in which the differential operator L, is defined by 

(3.10) 

(3.11) 

d3 d2 d 
L, = ~ 3 + f 0 p - 2 f ; - .  

7 7 d7 



where 

(3.13) 

The boundary conditions on these functions are 

(3.14) 
fij(0) = f q o )  =tij( co) = 0, 

gij(0) = gij(0) = gii( a3) = 0, 

since the boundary conditions (3.3) evidently then are satisfied, bearing in mind 
the previous results for fo and go. 

In  the general case considered above, therefore, it  appears that the number of 
functions of 7 which must be determined to  evaluate the flow to terms of order 
F is no less than seventeen, and it is evident that this number would be greatly 
increased at the next stage. In  the case of the two-dimensional main stream in 
which condition (2.12) is valid, the corresponding number of functions required 
for evaluation to order t2 is eleven. 

4. Modified results for the case V(0, s) = 0. 

main-stream velocity V now has the form 
The exceptional case mentioned in 9 2 is considered here. The component of 

= %V*(!5 4, 
where r is a positive integer and V* is an analytic function of 5, with V*(O, s)  +. 0. 
Hence E is not analytic at 5 = 0, since E = &/V. 
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Re-define the functions (2.10) so that they are based on U and V*; thus 

A = V*/U, etc. 
The expression for v is still 

With the above changes, equations (2.13) and (2.14) become 

= vag(t, 7, s)/@. 

f,,, +ffq, + kx2f(f,, - 2f,f(, +B(ff,, - 2 g +  2) + 2Q6-%fV, - Dt%f,, + 2f& - 2) 

%IT/, +fg,, + 2r(l -f,s,) + tPf*g,, - 2f&, + Bfs,, 4- 2C%(gg,, + 1 - 9 3  

+ 2AF(gsf,, - s,f,s)) = 0, (4.1) 

- ~ s ' s s , , + 2 E ( 1  -f,s,) +2AF(gsg,,-g,g?/S)) = 0. 

and 

(4.2) 

The expansions for f and g are as stated in (3.2). Further progress now depends 
on specifying the value of r ,  since the object here is to relate new functions to  
the functions defined in Q 3. 

Consider the case r = 1. The boundary conditions on the various functions 
are as stated in (3.3), and, after the algebra of expaiision of equations (4.1) and 
(4.2) and use of equations in the groups (3.11) and (3.13), the following results 
are seen to be true: 

f o  is the Blasius function, as before, 

fl = BO(fll+ 2flZh 

f z  = Bi(f,i -I- 2fzz 4fz3) (Bi 2co-Do)fz4  

+ 2(& + -Do)fz5 + WCO - Q)fz, + 4Dofie, 

90 = f o  + 2911, 

91 = $1 f 2BO(gZl + 2gZZ - 923) -k 2EO(gZ3 + 2gZ4), 

in which the functionsfij, gij are as specified in $3. 
Similar results may be derived for the case r = 2, and it  may be noted that 

in each case the expansions for the velocity components are available in terms 
of previous results as far as terms in E2. Thus, in the cme r = 2, the functionsf0, 
fl, f z  and go are obtainable. 

5. Numerical solution of the equations 
Equations (3.4), (3.11) and (3.13), subject to the appropriate boundary con- 

ditions, were solved numerically on the IBM 1620 computer at  Bristol University, 
and tables of the functions fij, gij and their first and second derivatives are avail- 
able on loan from the Editor of the Journal. As usual in computations of this type, 
where succeeding functions depend on functions previously calculated, numerical 
accuracy decreases owing to the presence of build-up error. However, f; is 
accurate to six decimal places, and i t  is safe to assume that fij, gli are accurate 
to five decimal places, and f z i ,  g2i to four decimal places. 

The shape of the velocity functions f i i  and gi; is shown typically by the graph 
of fil in figure 1, and further information about these functions is contained in 
table 1. For all the functions, the first derivative becomes zero to four places of 
decimals when 7 = 5.8. 

38 Fluid Mech. 22 
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FIGURE 1. Graph of the function f;l(r) defmed in $3. For certain details of the remaining 
functions f,,, gii see table 1. 

f o  

fil 

f 12 

f 21 
f 22 
f 23 
f24 

f 25 

f 26 

f27 

f 28 

f 2 9  

911 

gai 
9 2 2  

g23 

g24 

3 " ( 0 )  

0.469600 

0.1 1740 
1.03236 
0.76790 

0.0049 
- 0'1338 
- 0.7147 

0.0783 
0.9081 
0.0641 

- 0.0196 
- 0.0621 
- 0.0900 
- 0.0835 
- 0.3456 

0.6594 
- 0.0543 

-%Q) 
- 

0.30420 
1.12637 
0.56965 

- 0.0634 
- 0.6160 
- 1.6745 

0.2028 
0.8976 
0.1307 

- 0.0507 
-0.1144 
-0.1628 
- 0.2602 
- 0.6877 

0.4026 
- 0.0835 

Max./Min. X'(7) 

0.13699 
0.55823 
0.31928 

- 0.0350 
- 0.2677 
- 0.7707 

0.0913 
0.4477 
0.0630 

- 0.0228 
- 0.0565 
- 0.0810 
-0.1182 
- 0.3352 

0.2408 
- 0.0442 

7x 
- 
1.6 
1.2 
1.0 

2.6 
2.0 
1 . G  
1.6 
1.0 
1.4 
1-6 
1.4 
1-4 
1.8 
1.4 
0.8 
1.2 

TABLE 1. Numerical values obtained from the solution of equations (3.4), (3.11) and (3.13). 
The column headings X''(0), X(o0) denote the values of the second derivative of the func- 
tion at 7 = 0, and the limiting value of the function as 7+- co, respectively. Max./Min. 
X'(7) refers to the maximum or minimum value of the function, aa appropriate, and qx is 
the value of 7 at which this i s  attained. 
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6.  Application of results 
The example mentioned in $2 serves to illustrate an application of the general 

results. A circular cylinder of radius a is mountedwith its axis normal to the 
plate, and at distance nu downstream from the edge of the plate, as shown in 
figure 2 .  If the main stream has uniform velocity U, at infinity in the x-direction, 
the (potential) main-stream flow arising from the disturbance of the cylinder has 

in terms of the non-dimensional co-ordinates 6, s. These are the components of 
the main-stream flow over the plate, with the understanding that the region of 
plate under consideration is that over which the main stream is uninfluenced by 
boundary-layer and wake effects arising from the cylinder itself. 

Edge of plate ‘1. 

FIUURE 2. Streamlines in the main stream for flow round a circular cylinder, the cylinder 
being mounted with its axis normal to a flat plate and downstream from the edge of the 
plate. 

The quantities A ,  B etc. may be deduced from expressions (6.1), followed by 
expansions in powers of E to derive the coefficients which are required in expres- 
sions (3.10) and (3.13). With use of table 1, the properties of the boundary layer 
such as shear stress components and displacement thicknesses may then be 
evaluated, though hereafter only the shear stress will be considered, 

In  three-dimensional boundary layers, a feature of special interest is the extent 
of the departure of direction of flow in the layer from the direction of the main 
stream. Reference may be made for example to  Rosenhead (1963, p. 474) 
for some discussion of the influence of this secondary flow in the boundary layer 
with regard to separation effects on swept wings. The calculation of the direction 
of the limiting streamlines on the plate is obtained from results for the components 
r,, ry of the shear stress, in the directions Ox, Oy respectively. 

38-2 
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These are 

to order 6 2 .  Thus at any point (5, s), if a is the inclination of the streamline in 
the main stream to Ox and a + E is the corresponding angle for the limiting stream- 
line through (5, s), tan e = ( U T ~  - V T ~ ) / (  UT, + V T ~ ) .  (6.3) 

s l Tx T, E 

0.2 0.02 0.1859 0.0495 11.8 3.1 
0.04 0.1643 0.0589 12.5 7.2 
0.06 0.1420 0.0691 13.3 12.7 
0.08 0.1191 0-0802 14-2 19.8 
0.10 0.0958 0.0922 15.1 28.8 
0.12 0.0725 0.1051 16.1 39.3 
0.14 0.0493 0.1189 17.2 50.3 

0.4 0.04 0.2154 0~1080 19.6 7.0 
0.08 0.1897 0.1432 21.5 15.5 
0.12 0.1636 0.1838 23.7 24.6 
0.16 0.1375 0.2306 26.1 33.1 
0-20 0.1115 0.2842 28.8 39-8 

0.6 0.04 0.2819 0.1399 21.6 4-8 
0.08 0.2770 0.1787 23-1 9.7 
0.12 0-2738 0.2225 24.8 14.3 
0.16 0.2722 0.2720 26.6 18.4 
0.20 0.2722 0.3278 28.5 20.2 

0- 8 0.04 0-3482 0.1530 20.7 3-1 
0.08 0.3587 0.1878 21.8 5.8 
0.12 0.3724 0.2259 23.0 8.3 
0.16 0.3891 0.2676 24.2 10.3 
0.20 0.4093 0.3133 25.4 12.0 

1.0 0.04 0.4047 0.1510 18.6 1.9 
0.08 0.4237 0.1783 19.4 3.5 
0.12 0.4462 0.2073 20.1 4.8 
0.16 0.4721 0.2380 20.9 5.9 
0.20 0.5019 0.2703 21.7 6.6 

TABLE 2. Values of T,, T,, a and E for the case rz = 1.5 in curved flow over a flat plate 
due to disturbance by a cylinder (see 3 6). The direction of streamlines in the main stream, 
a, and the deflexion of the limiting streamlines, E ,  are meatired in degrees. The quantities 
T,, T, are related to the shear stress components T,, I-, by 

7, = ,u(u;~v& T ~ ,  T,  = , u ( ~ ~ / ~ v a t ; ) *  T,. 

Calculations were made for tho case n = 1.5, and table 2 shows results for 
Tx, T,, 01 and e for various values o f t  and s. Results (6.2), of course, each contains 
only the first three terms of an infinite series, and the question of the radius of 
convergence of the series arises. The coefficients in the series are functions of s, 
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and certainly for large values of s the coefficients of p(r  3 1) tend to zero, and 
it may be expected that the series will then converge for 151 < R(s),  where 
R(s)  is large. In  the limit as s -+ a, U = U,, 7 = 0, and rx is given by the first 
term in (6.2). For small values of s, however, the only available guidance is 
obtained from the numerical values of ( P J @ ~ / @ ~ ) ~ = ~ ,  etc., for various values of s. 
These are given in table 3, from which it seems reasonable to assume in table 2 
that the calculations for the range of values of ( shown in each case should be 
acceptable. 

The results for s = 0.2 are particularly striking, since they indicate consider- 
able deflexion of the limiting streamlines as ( increases, arising from pronounced 
decrease in the value of T,, with increase in T,. Indeed, Tz becomes negative 
at 5 = 0.2, which would imply back flow in the boundary layer at this stage. 
The original boundary-layer approximation is then no longer valid, but it is 
interesting to note that experimental results for a related investigation on turbu- 
lent boundary layers by Hornung & Joubert (1963) showed regions of strong 
back flow upstream from the cylinder, in consequence of the rise in pressure 
before the cylinder. 

9 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2-0 

aafilar2 
- 2.0771 
- 1.6421 
- 0.7841 
- 0.1069 

0.2488 
0-3831 
0.4035 
0.3746 
0.3286 
0.2803 
0-2356 

a2f &I2 
- 7.4981 
- 4.9648 
- 1.0350 

0.8372 
1.1419 
0.9291 
0.6565 
0.4407 
0.2896 
0.1881 
0.1207 

a291/art2 
4.2708 
4.0654 
3.5440 
2.9037 
2.2952 
1.7782 
1.3568 
1.0162 
0.7395 
0.5124 
0-3241 

a2921a'12 
4.5394 
3-7350 
1.9875 
0.4479 

- 0.4467 
- 0.8510 
- 0.9981 
- 1.0323 
- 1.0232 
- 1.0002 
- 0.9749 

TABLE 3. Values of coefficients in expressions (6.2), evaluated at 7 = 0, for the case 
TL = 1.5 in curved flow over a flat plate due to disturbance by a cylinder. The value of 
(f:),=,, is 0.4696. 

For large values of s, the shear stress rx assumes the ordinary flat-plate value 
for a constant main stream, namely, 

rx = 0.4696,~(  U!/2vat)* 

so that T, = 0.4696 = ( f&=o. Near the cylinder, however, Tx assumes values 
both in excess and defect of this, by reason of the spatial variation of velocity 
of the main stream. It is of interest, therefore, to calculate the influence of the 
cylinder on the drag of a central section of plate, of depth t1 (measured from the 
leading edge) and of span 2sl, by evaluating the total excess Q((l,sl) of force 
over the force exerted by a uniform main stream, that is 
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The integrand may be expanded in powers of 6, and one integration leads to the 
result 

valid for small values of tl, where the coefficients m,. are functions of 8,. The inte- 
grals which determine the m, do not appear to respond to analytical evaluation, 
even in the limit s, -+ co. They have been evaluated numerically for the case 

Q(Ei, 81) = ~ ( 2 q a ) '  ( E i ; l ~ ) ~  (mo + mit i  +mz[?), (6.4) 

31 m0 "1 ma 

1.0 - 0.1966 - 0.1378 - 0'0297 
5.0 - 0.1078 0.1241 0.1002 

10.0 - 0.0471 0.1394 0.0975 
15.0 - 0.0247 0.1412 0.0971 
20.0 - 0.0132 0.1416 0.0969 
25.0 - 0.0062 0.1418 0.0969 
30.0 - 0.0018 0-1419 0.0969 

lim s1 + 03 0.0219 0-1423 0.0968 

TABLE 4. Values of the coefficients mo, m,, m2, in result (6.4), for the case n = 1.5, in the 
determination of excess force on a section of plate arising from curved flow over the plate 
due to disturbance by a cylinder. 

n = 1.5, and some results are displayed in table 4. In this instance, as s, increases, 
mo, m,, m2 eventually are all positive. Thus for sections of large span, namely 
s, > 32 approximately, Q is positive for all values of El. However, since m, 
is negative for all values of s, less than 32, Q is negative for sufficiently small 
values of t,, and even for all values of El in the range 0 < (, < 0.1, Q remains 
negative provided s, < 18. 

The author wishes to express thanks to his colleague Dr G.Poots for his 
generous advice on the computations for this paper. 
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